首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11880篇
  免费   515篇
  国内免费   1172篇
化学   10005篇
晶体学   788篇
力学   322篇
综合类   39篇
数学   71篇
物理学   2342篇
  2024年   3篇
  2023年   97篇
  2022年   69篇
  2021年   85篇
  2020年   142篇
  2019年   144篇
  2018年   153篇
  2017年   215篇
  2016年   310篇
  2015年   292篇
  2014年   394篇
  2013年   647篇
  2012年   1637篇
  2011年   721篇
  2010年   652篇
  2009年   783篇
  2008年   990篇
  2007年   1152篇
  2006年   812篇
  2005年   713篇
  2004年   731篇
  2003年   554篇
  2002年   325篇
  2001年   201篇
  2000年   142篇
  1999年   150篇
  1998年   162篇
  1997年   147篇
  1996年   199篇
  1995年   163篇
  1994年   155篇
  1993年   139篇
  1992年   110篇
  1991年   80篇
  1990年   55篇
  1989年   46篇
  1988年   39篇
  1987年   28篇
  1986年   21篇
  1985年   21篇
  1984年   11篇
  1983年   7篇
  1982年   13篇
  1981年   10篇
  1980年   12篇
  1979年   9篇
  1975年   3篇
  1973年   4篇
  1969年   4篇
  1966年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Polylactide (PLA) was plasticized by polyethylene glycols (PEGs) with five different molecular weights (Mw = 200–20,000 g/mol). The effects of content and molecular weight of PEG on the crystallization and impact properties of PLA were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, and V‐notched impact tests, respectively. The results revealed that PEG‐10,000 could significantly improve the crystallization capacity and impact toughness of PLA. When the PEG‐10,000 content ranged from 0 to 20 wt%, the increases in both V‐notched Izod and Charpy impact strengths of PLA/PEG‐10,000 blends were 206.10% and 137.25%, respectively. Meanwhile, the crystallinity of PLA/PEG‐10,000 blends increased from 3.95% to 43.42%. For 10 wt% PEG content, the crystallization and impact properties of PLA/PEG blends mainly depended upon PEG molecular weight. With increasing the Mw of PEG, the crystallinity and impact strength of PLA/PEG blends first decreased and then increased. The introduction of PEG reduced the intermolecular force and enhanced the mobility of PLA chains, thus improving the crystallization capacity and flexibility of PLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
82.
The rational design of high‐performance fluorescent materials for cancer targeting in vivo is still challenging. A unique molecular design strategy is presented that involves tailoring aggregation‐induced emission (AIE)‐active organic molecules to realize preferable far‐red and NIR fluorescence, well‐controlled morphology (from rod‐like to spherical), and also tumor‐targeted bioimaging. The shape‐tailored organic quinoline–malononitrile (QM) nanoprobes are biocompatible and highly desirable for cell‐tracking applications. Impressively, the spherical shape of QM‐5 nanoaggregates exhibits excellent tumor‐targeted bioimaging performance after intravenously injection into mice, but not the rod‐like aggregates of QM‐2.  相似文献   
83.
A crystal-inelasticity-based constitutive model for martensitic reorientation and detwinning in shape-memory alloys (SMAs) has been developed from basic thermodynamics principles. The model has been implemented in a finite-element program by writing a user-material subroutine. We perform two sets of finite-element simulations to model the behavior of polycrystalline SMAs: (1) The full finite-element model where each finite element represents a collection of martensitic microstructures which originated from within an austenite single crystal, chosen from a set of crystal orientations that approximates the initial austentic crystallographic texture. The macroscopic stress-strain responses are calculated as volume averages over the entire aggregate: (2) The Taylor model (J. Inst. Metals 62 (1938) 32) where an integration point in a finite element represents a material point which consist of sets of martensitic microstructures which originated from within respective austenite single-crystals. Here the macroscopic stress-strain responses are calculated through a homogenization scheme.Experiments in tension and compression were conducted on textured polycrystalline Ti-Ni rod initially in the martensitic phase by Xie et al (Acta Mater. 46 (1998) 1989). The material parameters for the constitutive model were calibrated by fitting the tensile stress-strain response from a full finite-element calculation of a polycrystalline aggregate to the simple tension experiment. With the material parameters calibrated the predicted stress-strain curve for simple compression is in very good accord with the corresponding experiment. By comparing the simulated stress-strain response in simple tension and simple compression it is shown that the constitutive model is able to predict the observed tension-compression asymmetry exhibited by polycrystalline Ti-Ni to good accuracy. Furthermore, our calculations also show that the macroscopic stress-strain response depends strongly on the initial martensitic microstructure and crystallographic texture of the material.We also show that the Taylor model predicts the macroscopic stress-strain curves in simple tension and simple compression reasonably well. Therefore, it may be used as a relatively inexpensive computational tool for the design of components made from shape-memory materials.  相似文献   
84.
不同年龄段天然牙的摩擦磨损行为研究   总被引:2,自引:3,他引:2  
采用往复滑动摩擦磨损试验台考察了不同年龄段的天然牙同钛合金配副时的摩擦学性能.结果表明:天然牙的摩擦磨损行为同年龄密切相关,早期和中期恒牙的摩擦磨损行为相似,磨损表面主要呈现轻微擦伤迹象,中期恒牙的抗磨性能最佳;乳牙及晚期恒牙的摩擦系数变化波动较大,抗磨性能不佳,磨损表面主要呈现严重犁削和剥落特征.  相似文献   
85.
岩石结构面的表面形态特征研究   总被引:6,自引:0,他引:6  
夏才初 《力学学报》1996,4(3):71-78
本文用理论分析和数值模拟方法对具有不同粗糙度和起伏度的岩石结构面的形态特征作了定量研究, 着重研究了结构面表面形态参数与基本形态特征参数的关系, 并研究了它们的采样效应。得到了一系列在建立表面形态参数与物理量相互关系时对合理选用表面形态参数有重要意义的结果, 并可为选取合理的采样间隔和最小采样长度提供依据。  相似文献   
86.
Deformation and stress from in-pore drying-induced crystallization of salt   总被引:3,自引:0,他引:3  
The deformation and the fracture of porous solids from internal crystallization of salt is explored in the framework of the thermodynamics of unsaturated brittle poroelasticity. In the first place the usual theory of crystal growth in confined conditions is further developed in order to include both the deformation and the drying of the porous solid. The thermodynamics reveals the existence of a dilation coefficient associated with the crystallization process, and provides a solute-crystal equilibrium condition which involves the relative humidity, the supersaturation, and the salt characteristics. This thermodynamic condition and the mechanical equilibrium of the solution-crystal interface combine to give the current crystallization pore radius. Upscaling this information at the macroscopic scale, and taking into account the salt mass supplied by the invading solution, the approach leads to a quantitative analysis of the role of the pore size distribution on the crystal growth under repeated imbibition-drying cycles. The deformation and the fracture of the porous solid from drying-induced crystallization are then considered in the context of brittle poroelasticity. The current unsaturated macroscopic poroelastic properties are upscaled from the microscopic elastic properties of the solid matrix and from the current liquid, crystal and gas saturations. The adoption of a fracture criterion based on the elastic energy that the solid matrix can ultimately store finally leads to the determination of how long a stone can resist repeated cycles of drying-induced crystallization of salt.  相似文献   
87.
提出了一种扫描电镜准动态观察磨损表面形貌的方法-定位间断观察法,通过坐标定位和形貌特征定位,可简便,准确地确定跟踪观察位置。将试样表面的摩擦方向垂直于电子束的行扫描方向并使试样表面适度倾向二次电子探测器,可提高观察和拍摄效果,利用该方法观察了一种高铬铸铁中的(Fe,Cr)7C3碳化物与SiC磨粒干滑动摩擦过程中的形貌演变。  相似文献   
88.
Spiral surface growth is well understood in the limit where motion of the spiral ridge is controlled by the local supersaturation of adatoms in its surrounding. In liquid epitaxial growth, however, spirals can form governed by both, transport of heat as well as solute. We propose for the first time a two-scale model of epitaxial growth which takes into account all of these transport processes. This new model assumes a separation of length scales for the transport of heat compared to that of the solutal field. It allows for the first time numerical simulations of extended surface regions by at the same time taking into account microstructure evolution and microstructure interaction. We apply this model successfully to extend the scaling relation for the step spacing given by the BCF theory [Phil. Trans. R. Soc. London, Ser. A 243, 299 (1951)] to microstructure evolution governed by heat and solute diffusion. Further applications to understand the mechanisms and consequences of spiral interaction at epitaxial surfaces, in particular the resulting morphology transitions, are discussed.  相似文献   
89.
This study develops a small-deformation theory of strain-gradient plasticity for single crystals. The theory is based on: (i) a kinematical notion of a continuous distribution of edge and screw dislocations; (ii) a system of microscopic stresses consistent with a system of microscopic force balances, one balance for each slip system; (iii) a mechanical version of the second law that includes, via the microscopic stresses, work performed during viscoplastic flow; and (iv) a constitutive theory that allows:
the free energy to depend on densities of edge and screw dislocations and hence on gradients of (plastic) slip;
the microscopic stresses to depend on slip-rate gradients.
The microscopic force balances when augmented by constitutive relations for the microscopic stresses results in a system of nonlocal flow rules in the form of second-order partial differential equations for the slips. When the free energy depends on the dislocation densities the microscopic stresses are partially energetic, and this, in turn, leads to backstresses in the flow rules; on the other hand, a dependence of these stresses on slip-rate gradients leads to a strengthening. The flow rules, being nonlocal, require microscopic boundary conditions; as an aid to numerical solutions a weak (virtual power) formulation of the flow rule is derived.  相似文献   
90.
An alumina-supported cobalt aerogel catalyst prepared from a sol-gel and a supercritical drying method was used in the catalytic decomposition of methane.The physical-chemical properties of the catalyst were characterized and its activity for methane decomposition was investigated.The effects of calcination and reaction temperatures on the activity of the catalyst and the morphology of the carbon nanotubes produced were discussed.A COAl2O4 spinel structure formed in the calcined catalyst.The quantity of the nanotubes produced in the reaction increases with the amount of cobalt in the reduced catalyst.A higher reaction temperature leads to a higher reaction rate,though faster deactivation of the catalyst occurs with the change.The carbon nanotubes grown on the catalyst have smooth walls and uniform diameter distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号